3.I.8C

Further Complex Methods | Part II, 2008

What is the effect of the Möbius transformation zzz1z \rightarrow \frac{z}{z-1} on the points z=0z=0, z=z=\infty and z=1z=1 ?

By considering

(z1)aP{010a0z(z1)11ccbba}(z-1)^{-a} P\left\{\begin{array}{cccc} 0 & \infty & 1 & \\ 0 & a & 0 & z(z-1)^{-1} \\ 1-c & c-b & b-a & \end{array}\right\}

or otherwise, show that (z1)aF(a,cb;c;z(z1)1)(z-1)^{-a} F\left(a, c-b ; c ; z(z-1)^{-1}\right) is a branch of the PP-function

Give a linearly independent branch.

Typos? Please submit corrections to this page on GitHub.