3.I.7A

Dynamical Systems | Part II, 2008

State the normal-form equations for (i) a saddle-node bifurcation, (ii) a transcritical bifurcation and (iii) a pitchfork bifurcation, for a one-dimensional map xn+1=F(xn;μ)x_{n+1}=F\left(x_{n} ; \mu\right).

Consider a period-doubling bifurcation of the form

xn+1=xn+α+βxn+γxn2+δxn3+O(xn4),x_{n+1}=-x_{n}+\alpha+\beta x_{n}+\gamma x_{n}^{2}+\delta x_{n}^{3}+O\left(x_{n}^{4}\right),

where xn=O(μ1/2),α,β=O(μ)x_{n}=O\left(\mu^{1 / 2}\right), \alpha, \beta=O(\mu), and γ,δ=O(1)\gamma, \delta=O(1) as μ0\mu \rightarrow 0. Show that

Xn+2=Xn+μ^XnAXn3+O(Xn4),X_{n+2}=X_{n}+\hat{\mu} X_{n}-A X_{n}^{3}+O\left(X_{n}^{4}\right),

where Xn=xn12αX_{n}=x_{n}-\frac{1}{2} \alpha, and the parameters μ^\hat{\mu} and AA are to be identified in terms of α,β\alpha, \beta, γ\gamma and δ\delta. Deduce the condition for the bifurcation to be supercritical.

Typos? Please submit corrections to this page on GitHub.