2.I.7A

Dynamical Systems | Part II, 2008

Explain the difference between a stationary bifurcation and an oscillatory bifurcation for a fixed point x0\mathbf{x}_{0} of a dynamical system x˙=f(x;μ)\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x} ; \mu) in Rn\mathbb{R}^{n} with a real parameter μ\mu.

The normal form of a Hopf bifurcation in polar coordinates is

r˙=μrar3+O(r5)θ˙=ω+cμbr2+O(r4)\begin{aligned} &\dot{r}=\mu r-a r^{3}+O\left(r^{5}\right) \\ &\dot{\theta}=\omega+c \mu-b r^{2}+O\left(r^{4}\right) \end{aligned}

where a,b,ca, b, c and ω\omega are constants, a0a \neq 0, and ω>0\omega>0. Sketch the phase plane near the bifurcation for each of the cases (i) μ<0<a\mu<0<a, (ii) 0<μ,a0<\mu, a, (iii) μ,a<0\mu, a<0 and (iv) a<0<μa<0<\mu.

Let RR be the radius and TT the period of the limit cycle when one exists. Sketch how RR varies with μ\mu for the case when the limit cycle is subcritical. Find the leading-order approximation to dT/dμd T / d \mu for μ1|\mu| \ll 1.

Typos? Please submit corrections to this page on GitHub.