2.I.7A
Explain the difference between a stationary bifurcation and an oscillatory bifurcation for a fixed point of a dynamical system in with a real parameter .
The normal form of a Hopf bifurcation in polar coordinates is
where and are constants, , and . Sketch the phase plane near the bifurcation for each of the cases (i) , (ii) , (iii) and (iv) .
Let be the radius and the period of the limit cycle when one exists. Sketch how varies with for the case when the limit cycle is subcritical. Find the leading-order approximation to for .
Typos? Please submit corrections to this page on GitHub.