2.II.13B

Mathematical Biology | Part II, 2008

Consider the nonlinear equation describing the invasion of a population u(x,t)u(x, t)

ut=muxx+f(u)u_{t}=m u_{x x}+f(u)

with m>0,f(u)=u(ur)(u1)m>0, f(u)=-u(u-r)(u-1) and 0<r<10<r<1 a constant.

(a) Considering time-dependent spatially homogeneous solutions, show that there are two stable and one unstable uniform steady states.

(b) In the case r=12r=\frac{1}{2}, find the stationary 'front' which has

u1 as x and u0 as xu \rightarrow 1 \text { as } x \rightarrow-\infty \quad \text { and } \quad u \rightarrow 0 \text { as } x \rightarrow \infty

[Hint: f(u)=F(u)f(u)=F^{\prime}(u) where F(u)=14u2(1u)2+16(r12)u2(2u3)F(u)=-\frac{1}{4} u^{2}(1-u)^{2}+\frac{1}{6}\left(r-\frac{1}{2}\right) u^{2}(2 u-3).]

(c) Now consider travelling-wave solutions to (1) of the form u(x,t)=U(z)u(x, t)=U(z) where z=xvtz=x-v t. Show that UU satisfies an equation of the form

mU¨+vU˙=V(U),m \ddot{U}+v \dot{U}=-V^{\prime}(U),

where ()ddz()\left({ }^{\cdot}\right) \equiv \frac{d}{d z}(\quad) and ()ddU()^{\prime} \equiv \frac{d}{d U}(\quad).

Sketch the form of V(U)V(U) for r=12,r>12r=\frac{1}{2}, r>\frac{1}{2} and r<12r<\frac{1}{2}. Using conditions (2), show that

vU˙2dz=F(1)F(0).v \int_{-\infty}^{\infty} \dot{U}^{2} d z=F(1)-F(0) .

Deduce how the sign of the travelling-wave velocity vv depends on rr.

Typos? Please submit corrections to this page on GitHub.