3.II .37 B. 37 \mathrm{~B} \quad

Waves | Part II, 2008

The real function ϕ(x,t)\phi(x, t) satisfies the Klein-Gordon equation

2ϕt2=2ϕx2ϕ,<x<,t0\frac{\partial^{2} \phi}{\partial t^{2}}=\frac{\partial^{2} \phi}{\partial x^{2}}-\phi, \quad-\infty<x<\infty, t \geqslant 0

Find the dispersion relation for disturbances of wavenumber kk and deduce their phase and group velocities.

Suppose that at t=0t=0

ϕ(x,0)=0 and ϕt(x,0)=ex\phi(x, 0)=0 \quad \text { and } \quad \frac{\partial \phi}{\partial t}(x, 0)=e^{-|x|}

Use Fourier transforms to find an integral expression for ϕ(x,t)\phi(x, t) when t>0t>0.

Use the method of stationary phase to find ϕ(Vt,t)\phi(V t, t) for tt \rightarrow \infty for fixed 0<V<10<V<1. What can be said if V>1V>1 ?

[Hint: you may assume that

eax2dx=πa,Re(a)>0.]\left.\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}, \quad \operatorname{Re}(a)>0 .\right]

Typos? Please submit corrections to this page on GitHub.