3.II.36A

Fluid Dynamics II | Part II, 2008

Show that, in cylindrical polar co-ordinates, the streamfunction ψ(r,ϕ)\psi(r, \phi) for the velocity u=(ur(r,ϕ),uϕ(r,ϕ),0)\mathbf{u}=\left(u_{r}(r, \phi), u_{\phi}(r, \phi), 0\right) and vorticity (0,0,ω(r,ϕ))(0,0, \omega(r, \phi)) of two-dimensional Stokes flow of incompressible fluid satisfies the equations

u=(1rψϕ,ψr,0),2ω=4ψ=0\mathbf{u}=\left(\frac{1}{r} \frac{\partial \psi}{\partial \phi},-\frac{\partial \psi}{\partial r}, 0\right), \quad \nabla^{2} \omega=-\nabla^{4} \psi=0

Show also that the pressure p(r,ϕ)p(r, \phi) satisfies 2p=0\nabla^{2} p=0.

A stationary rigid circular cylinder of radius aa occupies the region rar \leqslant a. The flow around the cylinder tends at large distances to a simple shear flow, with velocity given in cartesian coordinates (x,y,z)(x, y, z) by u=(Γy,0,0)\mathbf{u}=(\Gamma y, 0,0). Inertial forces may be neglected.

By solving the equation for ψ\psi in cylindrical polars, determine the flow field everywhere. Determine the torque on the cylinder per unit length in zz.

[Hint: in cylindrical polars

2V=1rr(rVr)+1r22Vϕ2\nabla^{2} V=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}

The off-diagonal component of the rate-of-strain tensor is given by

erϕ=12(1rurϕ+rr(uϕr)).]\left.e_{r \phi}=\frac{1}{2}\left(\frac{1}{r} \frac{\partial u_{r}}{\partial \phi}+r \frac{\partial}{\partial r}\left(\frac{u_{\phi}}{r}\right)\right) .\right]

Typos? Please submit corrections to this page on GitHub.