2.II.35E

General Relativity | Part II, 2008

Let xa(λ)x^{a}(\lambda) be a path PP with tangent vector Ta=ddλxa(λ)T^{a}=\frac{d}{d \lambda} x^{a}(\lambda). For vectors Xa(x(λ))X^{a}(x(\lambda)) and Ya(x(λ))Y^{a}(x(\lambda)) defined on PP let

TXa=ddλXa+Γbca(x(λ))XbTc\nabla_{T} X^{a}=\frac{d}{d \lambda} X^{a}+\Gamma_{b c}^{a}(x(\lambda)) X^{b} T^{c}

where Γbca(x)\Gamma_{b c}^{a}(x) is the metric connection for a metric gab(x).TYag_{a b}(x) . \nabla_{T} Y^{a} is defined similarly. Suppose PP is geodesic and λ\lambda is an affine parameter. Explain why TTa=0\nabla_{T} T^{a}=0. Show that if TXa=TYa=0\nabla_{T} X^{a}=\nabla_{T} Y^{a}=0 then gab(x(λ))Xa(x(λ))Yb(x(λ))g_{a b}(x(\lambda)) X^{a}(x(\lambda)) Y^{b}(x(\lambda)) is constant along PP.

If xa(λ,μ)x^{a}(\lambda, \mu) is a family of geodesics which depend on μ\mu, let Sa=μxaS^{a}=\frac{\partial}{\partial \mu} x^{a} and define

SXa=μXa+Γbca(x(λ))XbSc\nabla_{S} X^{a}=\frac{\partial}{\partial \mu} X^{a}+\Gamma_{b c}^{a}(x(\lambda)) X^{b} S^{c}

Show that TSa=STa\nabla_{T} S^{a}=\nabla_{S} T^{a} and obtain

T2SaT(TSa)=RbcdaTbTcSd\nabla_{T}{ }^{2} S^{a} \equiv \nabla_{T}\left(\nabla_{T} S^{a}\right)=R_{b c d}^{a} T^{b} T^{c} S^{d}

What is the physical relevance of this equation in general relativity? Describe briefly how this is relevant for an observer moving under gravity.

[You may assume [T,S]Xa=RbcdaXbTcSd\left[\nabla_{T}, \nabla_{S}\right] X^{a}=R_{b c d}^{a} X^{b} T^{c} S^{d}.]

Typos? Please submit corrections to this page on GitHub.