1.II.32D

Principles of Quantum Mechanics | Part II, 2008

(a) If AA and BB are operators which each commute with their commutator [A,B][A, B], show that [A,eB]=[A,B]eB\left[A, e^{B}\right]=[A, B] e^{B}. By considering

F(λ)=eλAeλBeλ(A+B)F(\lambda)=e^{\lambda A} e^{\lambda B} e^{-\lambda(A+B)}

and differentiating with respect to the parameter λ\lambda, show also that

eAeB=CeA+B=eA+BCe^{A} e^{B}=C e^{A+B}=e^{A+B} C

where C=e12[A,B]C=e^{\frac{1}{2}[A, B]}.

(b) Consider a one-dimensional quantum system with position x^\hat{x} and momentum p^\hat{p}. Write down a formula for the operator U(α)U(\alpha) corresponding to translation through α\alpha, calculate [x^,U(α)][\hat{x}, U(\alpha)], and show that your answer is consistent with the assumption that position eigenstates obey x+α=U(α)x|x+\alpha\rangle=U(\alpha)|x\rangle. Given this assumption, express the wavefunction for U(α)ψU(\alpha)|\psi\rangle in terms of the wavefunction ψ(x)\psi(x) for ψ|\psi\rangle.

Now suppose the one-dimensional system is a harmonic oscillator of mass mm and frequency ω\omega. Show that

ψ0(xα)=emωα2/4n=0(mω2)n/2αnn!ψn(x),\psi_{0}(x-\alpha)=e^{-m \omega \alpha^{2} / 4 \hbar} \sum_{n=0}^{\infty}\left(\frac{m \omega}{2 \hbar}\right)^{n / 2} \frac{\alpha^{n}}{\sqrt{n !}} \psi_{n}(x),

where ψn(x)\psi_{n}(x) are normalised wavefunctions with energies En=ω(n+12)E_{n}=\hbar \omega\left(n+\frac{1}{2}\right).

[Standard results for constructing normalised energy eigenstates in terms of annihilation and creation operators

a=(mω2)1/2(x^+imωp^),a=(mω2)1/2(x^imωp^)a=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2}\left(\hat{x}+\frac{i}{m \omega} \hat{p}\right), \quad a^{\dagger}=\left(\frac{m \omega}{2 \hbar}\right)^{1 / 2}\left(\hat{x}-\frac{i}{m \omega} \hat{p}\right)

may be quoted without proof.]

Typos? Please submit corrections to this page on GitHub.