2.II.18F

Galois Theory | Part II, 2007

Let L=K(ξn)L=K\left(\xi_{n}\right), where ξn\xi_{n} is a primitive nnth root of unity and G=Aut(L/K)G=\operatorname{Aut}(L / K). Prove that there is an injective group homomorphism χ:G(Z/nZ)\chi: G \rightarrow(\mathbb{Z} / n \mathbb{Z})^{*}.

Show that, if MM is an intermediate subfield of K(ξn)/KK\left(\xi_{n}\right) / K, then M/KM / K is Galois. State carefully any results that you use.

Give an example where GG is non-trivial but χ\chi is not surjective. Show that χ\chi is surjective when K=QK=\mathbb{Q} and nn is a prime.

Determine all the intermediate subfields MM of Q(ξ7)\mathbb{Q}\left(\xi_{7}\right) and the automorphism groups Aut(Q(ξ7)/M)\operatorname{Aut}\left(\mathbb{Q}\left(\xi_{7}\right) / M\right). Write the quadratic subfield in the form Q(d)\mathbb{Q}(\sqrt{d}) for some dQd \in \mathbb{Q}.

Typos? Please submit corrections to this page on GitHub.