3.I.10A

Cosmology | Part II, 2007

The number density of a non-relativistic species in thermal equilibrium is given by

n=gs(2πmkTh2)3/2exp[(μmc2)/kT]n=g_{s}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} \exp \left[\left(\mu-m c^{2}\right) / k T\right]

Suppose that thermal and chemical equilibrium is maintained between protons p (mass mpm_{\mathrm{p}}, degeneracy gs=2g_{s}=2 ), neutrons n\mathrm{n} (mass mnmpm_{\mathrm{n}} \approx m_{\mathrm{p}}, degeneracy gs=2g_{s}=2 ) and helium-4 nuclei 4He({ }^{4} \mathrm{He}\left(\right. mass mHe4mpm_{\mathrm{He}} \approx 4 m_{\mathrm{p}}, degeneracy gs=1g_{s}=1 ) via the interaction

2p+2n4He+γ2 \mathrm{p}+2 \mathrm{n} \leftrightarrow{ }^{4} \mathrm{He}+\gamma

where you may assume the photons γ\gamma have zero chemical potential μγ=0\mu_{\gamma}=0. Given that the binding energy of helium-4 obeys BHe/c22mp+2nnmHemHeB_{\mathrm{He}} / c^{2} \equiv 2 m_{\mathrm{p}}+2 n_{\mathrm{n}}-m_{\mathrm{He}} \ll m_{\mathrm{He}}, show that the ratio of the number densities can be written as

np2nn2nHe=2(2πmpkTh2)9/2exp(BHe/kT)\frac{n_{\mathrm{p}}^{2} n_{\mathrm{n}}^{2}}{n_{\mathrm{He}}}=2\left(\frac{2 \pi m_{\mathrm{p}} k T}{h^{2}}\right)^{9 / 2} \exp \left(-B_{\mathrm{He}} / k T\right)

Explain briefly why the baryon-to-photon ratio ηnB/nγ\eta \equiv n_{B} / n_{\gamma} remains constant during the expansion of the universe, where nBnp+nn+4nHen_{B} \approx n_{\mathrm{p}}+n_{\mathrm{n}}+4 n_{\mathrm{He}} and nγ(16π/(hc)3)(kT)3n_{\gamma} \approx\left(16 \pi /(h c)^{3}\right)(k T)^{3}.

By considering the fractional densities Xini/nBX_{i} \equiv n_{i} / n_{B} of the species ii, re-express the ratio ( \uparrow ) in the form

Xp2Xn2XHe=η3132(π2)3/2(mpc2kT)9/2exp(BHe/kT)\frac{X_{\mathrm{p}}^{2} X_{\mathrm{n}}^{2}}{X_{\mathrm{He}}}=\eta^{-3} \frac{1}{32}\left(\frac{\pi}{2}\right)^{3 / 2}\left(\frac{m_{\mathrm{p}} c^{2}}{k T}\right)^{9 / 2} \exp \left(-B_{\mathrm{He}} / k T\right)

Given that BHe30MeVB_{\mathrm{He}} \approx 30 \mathrm{MeV}, verify (very approximately) that this ratio approaches unity when kT0.3MeVk T \approx 0.3 \mathrm{MeV}. In reality, helium-4 is not formed until after deuterium production at a considerably lower temperature. Explain briefly the reason for this delay.

Typos? Please submit corrections to this page on GitHub.