(a) For a numerical method to solve y′=f(t,y), define the linear stability domain and state when such a method is A-stable.
(b) Determine all values of the real parameter a for which the Runge-Kutta method
k1k2yn+1=f(tn+(21−a)h,yn+h[41k1+(41−a)k2])=f(tn+(21+a)h,yn+h[(41+a)k1+41k2])=yn+21h(k1+k2)
is A-stable.