4.II.36A

General Relativity | Part II, 2007

Consider a particle on a trajectory xa(λ)x^{a}(\lambda). Show that the geodesic equations, with affine parameter λ\lambda, coincide with the variational equations obtained by varying the integral

I=λ0λ1gab(x)dxa dλdxb dλdλI=\int_{\lambda_{0}}^{\lambda_{1}} g_{a b}(x) \frac{\mathrm{d} x^{a}}{\mathrm{~d} \lambda} \frac{\mathrm{d} x^{b}}{\mathrm{~d} \lambda} \mathrm{d} \lambda

the end-points being fixed.

In the case that f(r)=12GMuf(r)=1-2 G M u, show that the space-time metric is given in the form

ds2=f(r)dt2+1f(r)dr2+r2( dθ2+sin2θdϕ2)\mathrm{d} s^{2}=-f(r) \mathrm{d} t^{2}+\frac{1}{f(r)} \mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{d} \phi^{2}\right)

for a certain function f(r)f(r). Assuming the particle motion takes place in the plane θ=π2\theta=\frac{\pi}{2} show that

dϕdλ=hr2,dt dλ=Ef(r),\frac{\mathrm{d} \phi}{\mathrm{d} \lambda}=\frac{h}{r^{2}}, \quad \frac{\mathrm{d} t}{\mathrm{~d} \lambda}=\frac{E}{f(r)},

for h,Eh, E constants. Writing u=1/ru=1 / r, obtain the equation

(du dϕ)2+f(r)u2=kh2f(r)+E2h2\left(\frac{\mathrm{d} u}{\mathrm{~d} \phi}\right)^{2}+f(r) u^{2}=-\frac{k}{h^{2}} f(r)+\frac{E^{2}}{h^{2}}

where kk can be chosen to be 1 or 0 , according to whether the particle is massive or massless. In the case that f(r)=1GMuf(r)=1-G M u, show that

d2u dϕ2+u=kGMh2+3GMu2\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=k \frac{G M}{h^{2}}+3 G M u^{2}

In the massive case, show that there is an approximate solution of the form

u=1(1+ecos(αϕ)),u=\frac{1}{\ell}(1+e \cos (\alpha \phi)),

where

1α=3GM.1-\alpha=\frac{3 G M}{\ell} .

What is the interpretation of this solution?

Typos? Please submit corrections to this page on GitHub.