1.II.35A

General Relativity | Part II, 2007

Starting from the Riemann tensor for a metric gabg_{a b}, define the Ricci tensor RabR_{a b} and the scalar curvature RR.

The Riemann tensor obeys

eRabcd+cRabde+dRabec=0\nabla_{e} R_{a b c d}+\nabla_{c} R_{a b d e}+\nabla_{d} R_{a b e c}=0

Deduce that

aRab=12bR\nabla^{a} R_{a b}=\frac{1}{2} \nabla_{b} R

Write down Einstein's field equations in the presence of a matter source, with energymomentum tensor TabT_{a b}. How is the relation ()(*) important for the consistency of Einstein's equations?

Show that, for a scalar function ϕ\phi, one has

2aϕ=a2ϕ+Rabbϕ.\nabla^{2} \nabla_{a} \phi=\nabla_{a} \nabla^{2} \phi+R_{a b} \nabla^{b} \phi .

Assume that

Rab=abϕR_{a b}=\nabla_{a} \nabla_{b} \phi

for a scalar field ϕ\phi. Show that the quantity

R+aϕaϕR+\nabla^{a} \phi \nabla_{a} \phi

is then a constant.

Typos? Please submit corrections to this page on GitHub.