1.II.12G

Geometry of Group Actions | Part II, 2007

Define the Hausdorff dd-dimensional measure Hd(C)\mathcal{H}^{d}(C) and the Hausdorff dimension of a subset CC of R\mathbb{R}.

Set s=log2/log3s=\log 2 / \log 3. Define the Cantor set CC and show that its Hausdorff ss-dimensional measure is at most 1.1 .

Let (Xn)\left(X_{n}\right) be independent Bernoulli random variables that take the values 0 and 2 , each with probability 12\frac{1}{2}. Define

ξ=n=1Xn3n\xi=\sum_{n=1}^{\infty} \frac{X_{n}}{3^{n}}

Show that ξ\xi is a random variable that takes values in the Cantor set CC.

Let UU be a subset of R\mathbb{R} with 3(k+1)diam(U)<3k3^{-(k+1)} \leqslant \operatorname{diam}(U)<3^{-k}. Show that P(ξU)2k\mathbb{P}(\xi \in U) \leqslant 2^{-k} and deduce that, for any set URU \subset \mathbb{R}, we have

P(ξU)2(diam(U))s\mathbb{P}(\xi \in U) \leqslant 2(\operatorname{diam}(U))^{s}

Hence, or otherwise, prove that Hs(C)12\mathcal{H}^{s}(C) \geqslant \frac{1}{2} and that the Cantor set has Hausdorff dimension ss.

Typos? Please submit corrections to this page on GitHub.