2.II.33A

Applications of Quantum Mechanics | Part II, 2007

Describe the variational method for estimating the ground state energy of a quantum system. Prove that an error of order ϵ\epsilon in the wavefunction leads to an error of order ϵ2\epsilon^{2} in the energy.

Explain how the variational method can be generalized to give an estimate of the energy of the first excited state of a quantum system.

Using the variational method, estimate the energy of the first excited state of the anharmonic oscillator with Hamiltonian

H=d2dx2+x2+x4H=-\frac{d^{2}}{d x^{2}}+x^{2}+x^{4}

How might you improve your estimate?

[Hint: If I2n=x2neax2dxI_{2 n}=\int_{-\infty}^{\infty} x^{2 n} e^{-a x^{2}} d x then

I0=πa,I2=πa12a,I4=πa34a2,I6=πa158a3]\left.I_{0}=\sqrt{\frac{\pi}{a}}, \quad I_{2}=\sqrt{\frac{\pi}{a}} \frac{1}{2 a}, \quad I_{4}=\sqrt{\frac{\pi}{a}} \frac{3}{4 a^{2}}, \quad I_{6}=\sqrt{\frac{\pi}{a}} \frac{15}{8 a^{3}}\right]

Typos? Please submit corrections to this page on GitHub.