4.II.30A

Partial Differential Equations | Part II, 2007

State and prove the mean value property for harmonic functions on R3\mathbb{R}^{3}.

Obtain a generalization of the mean value property for sub-harmonic functions on R3\mathbb{R}^{3}, i.e. C2C^{2} functions for which

Δu(x)0-\Delta u(x) \leqslant 0

for all xR3x \in \mathbb{R}^{3}.

Let ϕC2(R3;C)\phi \in C^{2}\left(\mathbb{R}^{3} ; \mathbb{C}\right) solve the equation

Δϕ+iV(x)ϕ=0-\Delta \phi+i V(x) \phi=0

where VV is a real-valued continuous function. By considering the function w(x)=ϕ(x)2w(x)=|\phi(x)|^{2} show that, on any ball B(y,R)={x:xy<R}R3B(y, R)=\{x:\|x-y\|<R\} \subset \mathbb{R}^{3},

supxB(y,R)ϕ(x)supxy=Rϕ(x).\sup _{x \in B(y, R)}|\phi(x)| \leqslant \sup _{\|x-y\|=R}|\phi(x)| .

Typos? Please submit corrections to this page on GitHub.