2.II .25 J. 25 \mathrm{~J} \quad

Probability and Measure | Part II, 2006

(a) What is meant by saying that (Ω,A,μ)(\Omega, \mathcal{A}, \mu) is a measure space? Your answer should include clear definitions of any terms used.

(b) Consider the following sequence of Borel-measurable functions on the measure space (R,L,λ)(\mathbb{R}, \mathcal{L}, \lambda), with the Lebesgue σ\sigma-algebra L\mathcal{L} and Lebesgue measure λ\lambda :

fn(x)={1/n if 0xen;0 otherwise  for nNf_{n}(x)=\left\{\begin{array}{ll} 1 / n & \text { if } 0 \leqslant x \leqslant e^{n} ; \\ 0 & \text { otherwise } \end{array} \quad \text { for } n \in \mathbb{N}\right.

For each p[1,]p \in[1, \infty], decide whether the sequence (fn)nN\left(f_{n}\right)_{n \in \mathbb{N}} converges in LpL^{p} as nn \rightarrow \infty.

Does (fn)nN\left(f_{n}\right)_{n \in \mathbb{N}} converge almost everywhere?

Does (fn)nN\left(f_{n}\right)_{n \in \mathbb{N}} converge in measure?

Justify your answers.

For parts (c) and (d), let (fn)nN\left(f_{n}\right)_{n \in \mathbb{N}} be a sequence of real-valued, Borel-measurable functions on a probability space (Ω,A,μ)(\Omega, \mathcal{A}, \mu).

(c) Prove that {xΩ:fn(x)\left\{x \in \Omega: f_{n}(x)\right. converges to a finite limit }A\} \in \mathcal{A}.

(d) Show that fn0f_{n} \rightarrow 0 almost surely if and only if supmnfm0\sup _{m \geqslant n}\left|f_{m}\right| \rightarrow 0 in probability.

Typos? Please submit corrections to this page on GitHub.