4.II.15D

Cosmology | Part II, 2006

The perturbed motion of cold dark matter particles (pressure-free, P=0P=0 ) in an expanding universe can be parametrized by the trajectories

r(q,t)=a(t)[q+ψ(q,t)]\mathbf{r}(\mathbf{q}, t)=a(t)[\mathbf{q}+\boldsymbol{\psi}(\mathbf{q}, t)]

where a(t)a(t) is the scale factor of the universe, q\mathbf{q} is the unperturbed comoving trajectory and ψ\boldsymbol{\psi} is the comoving displacement. The particle equation of motion is r¨=Φ\ddot{\mathbf{r}}=-\nabla \Phi, where the Newtonian potential satisfies the Poisson equation 2Φ=4πGρ\nabla^{2} \Phi=4 \pi G \rho with mass density ρ(r,t)\rho(\mathbf{r}, t).

(a) Discuss how matter conservation in a small volume d3rd^{3} \mathbf{r} ensures that the perturbed density ρ(r,t)\rho(\mathbf{r}, t) and the unperturbed background density ρˉ(t)\bar{\rho}(t) are related by

ρ(r,t)d3r=ρˉ(t)a3(t)d3q\rho(\mathbf{r}, t) d^{3} \mathbf{r}=\bar{\rho}(t) a^{3}(t) d^{3} \mathbf{q}

By changing co-ordinates with the Jacobian

ri/qj1=aδij+aψi/qj1a3(1qψ),\left|\partial r_{i} / \partial q_{j}\right|^{-1}=\left|a \delta_{i j}+a \partial \psi_{i} / \partial q_{j}\right|^{-1} \approx a^{-3}\left(1-\nabla_{q} \cdot \psi\right),

show that the fractional density perturbation δ(q,t)\delta(\mathbf{q}, t) can be written to leading order as

δρρˉρˉ=qψ,\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}}=-\nabla_{q} \cdot \psi,

where qψ=iψi/qi\nabla_{q} \cdot \boldsymbol{\psi}=\sum_{i} \partial \psi_{i} / \partial q_{i}.

Use this result to integrate the Poisson equation once. Hence, express the particle equation of motion in terms of the comoving displacement as

ψ¨+2a˙aψ˙4πGρˉψ=0\ddot{\boldsymbol{\psi}}+2 \frac{\dot{a}}{a} \dot{\boldsymbol{\psi}}-4 \pi G \bar{\rho} \boldsymbol{\psi}=0

Infer that the density perturbation evolution equation is

δ¨+2a˙aδ˙4πGρˉδ=0\ddot{\delta}+2 \frac{\dot{a}}{a} \dot{\delta}-4 \pi G \bar{\rho} \delta=0

[Hint: You may assume that the integral of 2Φ=4πGρˉ\nabla^{2} \Phi=4 \pi G \bar{\rho} is Φ=4πGρˉr/3\nabla \Phi=-4 \pi G \bar{\rho} \mathbf{r} / 3. Note also that the Raychaudhuri equation (for P=0P=0 ) is a¨/a=4πGρˉ/3.\ddot{a} / a=-4 \pi G \bar{\rho} / 3 ..]

(b) Find the general solution of equation ()(*) in a flat (k=0)(k=0) universe dominated by cold dark matter (P=0)(P=0). Discuss the effect of late-time Λ\Lambda or dark energy domination on the growth of density perturbations.

Typos? Please submit corrections to this page on GitHub.