3.II.14E

Further Complex Methods | Part II, 2006

It is given that the hypergeometric function F(a,b;c;z)F(a, b ; c ; z) is the solution of the hypergeometric equation determined by the Papperitz symbol

P{010a01cbcab}P\left\{\begin{array}{ccc} 0 & \infty & 1 \\ 0 & a & 0 \\ 1-c & b & c-a-b \end{array}\right\}

that is analytic at z=0z=0 and satisfies F(a,b;c;0)=1F(a, b ; c ; 0)=1, and that for Re(cab)>0\operatorname{Re}(c-a-b)>0

F(a,b;c;1)=Γ(c)Γ(cab)Γ(ca)Γ(cb).F(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} .

[You may assume that a,b,ca, b, c are such that F(a,b;c;1)F(a, b ; c ; 1) exists.]

(a) Show, by manipulating Papperitz symbols, that

F(a,b;c;z)=(1z)aF(a,cb;c;zz1)(arg(1z)<π).F(a, b ; c ; z)=(1-z)^{-a} F\left(a, c-b ; c ; \frac{z}{z-1}\right) \quad(|\arg (1-z)|<\pi) .

(b) Let w1(z)=(z)aF(a,1+ac;1+ab;1z)w_{1}(z)=(-z)^{-a} F\left(a, 1+a-c ; 1+a-b ; \frac{1}{z}\right), where arg(z)<π|\arg (-z)|<\pi. Show that w1(z)w_{1}(z) satisfies the hypergeometric equation determined by ()(*).

(c) By considering the limit zz \rightarrow \infty in parts (a) and (b) above, deduce that, for arg(z)<π|\arg (-z)|<\pi,

F(a,b;c;z)=Γ(c)Γ(ba)Γ(b)Γ(ca)w1(z)+( a similar term with a and b interchanged )F(a, b ; c ; z)=\frac{\Gamma(c) \Gamma(b-a)}{\Gamma(b) \Gamma(c-a)} w_{1}(z)+(\text { a similar term with } a \text { and } b \text { interchanged })

Typos? Please submit corrections to this page on GitHub.