4.I.7E

Dynamical Systems | Part II, 2006

Consider the logistic map F(x)=μx(1x)F(x)=\mu x(1-x) for 0x1,0μ40 \leqslant x \leqslant 1,0 \leqslant \mu \leqslant 4. Show that there is a period-doubling bifurcation of the nontrivial fixed point at μ=3\mu=3. Show further that the bifurcating 2 -cycle (x1,x2)\left(x_{1}, x_{2}\right) is given by the roots of

μ2x2μ(μ+1)x+μ+1=0.\mu^{2} x^{2}-\mu(\mu+1) x+\mu+1=0 .

Show that there is a second period-doubling bifurcation at μ=1+6\mu=1+\sqrt{6}.

Typos? Please submit corrections to this page on GitHub.