2.II.37C2 . \mathrm{II} . 37 \mathrm{C} \quad

Waves | Part II, 2006

The dispersion relation for waves in deep water is

ω2=gk\omega^{2}=g|k|

At time t=0t=0 the water is at rest and the elevation of its free surface is ζ=ζ0exp(x/b)\zeta=\zeta_{0} \exp (-|x| / b) where bb is a positive constant. Use Fourier analysis to find an integral expression for ζ(x,t)\zeta(x, t) when t>0t>0.

Use the method of stationary phase to find ζ(Vt,t)\zeta(V t, t) for fixed V>0V>0 and tt \rightarrow \infty.

[exp(ikxxb)dx=2b1+k2b2;exp(ax2)dx=πa(Rea0)]\left[\int_{-\infty}^{\infty} \exp \left(i k x-\frac{|x|}{b}\right) d x=\frac{2 b}{1+k^{2} b^{2}} ; \quad \int_{-\infty}^{\infty} \exp \left(-a x^{2}\right) d x=\sqrt{\frac{\pi}{a}}(\operatorname{Re} a \geqslant 0) \cdot\right]

Typos? Please submit corrections to this page on GitHub.