2.II.35A

General Relativity | Part II, 2006

The Schwarzschild metric is

ds2=(12Mr)1dr2+r2(dθ2+sin2θdϕ2)(12Mr)dt2d s^{2}=\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)-\left(1-\frac{2 M}{r}\right) d t^{2}

Writing u=1/ru=1 / r, obtain the equation

d2udϕ2+u=3Mu2\frac{d^{2} u}{d \phi^{2}}+u=3 M u^{2}

determining the spatial orbit of a null (massless) particle moving in the equatorial plane θ=π/2\theta=\pi / 2.

Verify that two solutions of ()(*) are

 (i) u=13M, and  (ii) u=13M1M1coshϕ+1.\begin{aligned} \text { (i) } u &=\frac{1}{3 M}, \quad \text { and } \\ \text { (ii) } \quad u &=\frac{1}{3 M}-\frac{1}{M} \frac{1}{\cosh \phi+1} . \end{aligned}

What is the significance of solution (i)? Sketch solution (ii) and describe its relation to solution (i).

Show that, near ϕ=cosh12\phi=\cosh ^{-1} 2, one may approximate the solution (ii) by

rsin(ϕcosh12)27Mr \sin \left(\phi-\cosh ^{-1} 2\right) \approx \sqrt{27} M

and hence obtain the impact parameter.

Typos? Please submit corrections to this page on GitHub.