1.II .30 B. 30 \mathrm{~B}

Asymptotic Methods | Part II, 2006

Two real functions p(t),q(t)p(t), q(t) of a real variable tt are given on an interval [0,b][0, b], where b>0b>0. Suppose that q(t)q(t) attains its minimum precisely at t=0t=0, with q(0)=0q^{\prime}(0)=0, and that q(0)>0q^{\prime \prime}(0)>0. For a real argument xx, define

I(x)=0bp(t)exq(t)dtI(x)=\int_{0}^{b} p(t) e^{-x q(t)} d t

Explain how to obtain the leading asymptotic behaviour of I(x)I(x) as x+x \rightarrow+\infty (Laplace's method).

The modified Bessel function Iν(x)I_{\nu}(x) is defined for x>0x>0 by:

Iν(x)=1π0πexcosθcos(νθ)dθsin(νπ)π0ex(cosht)νtdt.I_{\nu}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{x \cos \theta} \cos (\nu \theta) d \theta-\frac{\sin (\nu \pi)}{\pi} \int_{0}^{\infty} e^{-x(\cosh t)-\nu t} d t .

Show that

Iν(x)ex2πxI_{\nu}(x) \sim \frac{e^{x}}{\sqrt{2 \pi x}}

as xx \rightarrow \infty with ν\nu fixed.

Typos? Please submit corrections to this page on GitHub.