B2 7

Differentiable Manifolds | Part II, 2004

For each of the following assertions, either provide a proof or give and justify a counterexample.

[You may use, without proof, your knowledge of the de Rham cohomology of surfaces.]

(a) A smooth map f:S2T2f: S^{2} \rightarrow T^{2} must have degree zero.

(b) An embedding φ:S1Σg\varphi: S^{1} \rightarrow \Sigma_{g} extends to an embedding φˉ:D2Σg\bar{\varphi}: D^{2} \rightarrow \Sigma_{g} if and only if the map

φ(S1):H1(Σg)R\int_{\varphi\left(S^{1}\right)}: H^{1}\left(\Sigma_{g}\right) \rightarrow \mathbb{R}

is the zero map.

(c) RP1×RP2\mathbb{R} \mathbb{P}^{1} \times \mathbb{R P}^{2} is orientable.

(d) The surface Σg\Sigma_{g} admits the structure of a Lie group if and only if g=1g=1.

Typos? Please submit corrections to this page on GitHub.