A4.17 B4.25

General Relativity | Part II, 2004

Starting from the Ricci identity

Va;b;cVa;c;b=VeRabceV_{a ; b ; c}-V_{a ; c ; b}=V_{e} R_{a b c}^{e}

give an expression for the curvature tensor RabceR_{a b c}^{e} of the Levi-Civita connection in terms of the Christoffel symbols and their partial derivatives. Using local inertial coordinates, or otherwise, establish that

Rabce+Rbcae+Rcabe=0.R_{a b c}^{e}+R_{b c a}^{e}+R_{c a b}^{e}=0 .

A vector field with components VaV^{a} satisfies

Va;b+Vb;a=0V_{a ; b}+V_{b ; a}=0

Show, using equation ()(*) that

Va;b;c=VeRcbaeV_{a ; b ; c}=V_{e} R_{c b a}^{e}

and hence that

Va;b;b+RacVc=0,V_{a ; b} ; b+R_{a}{ }^{c} V_{c}=0,

where RabR_{a b} is the Ricci tensor. Show that equation ()(* *) may be written as

(cgab)Vc+gcbaVc+gacbVc=0\left(\partial_{c} g_{a b}\right) V^{c}+g_{c b} \partial_{a} V^{c}+g_{a c} \partial_{b} V^{c}=0

If the metric is taken to be the Schwarzschild metric

ds2=(12Mr)dt2+(12Mr)1dr2+r2(dθ2+sin2θdϕ2)d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)

show that Va=δa0V^{a}=\delta^{a}{ }_{0} is a solution of ()(* * *). Calculate Va;aV^{a} ; a.

Electromagnetism can be described by a vector potential AaA_{a} and a Maxwell field tensor FabF_{a b} satisfying

Fab=Ab;aAa;b and Fab;b=0.F_{a b}=A_{b ; a}-A_{a ; b} \quad \text { and } \quad F_{a b} ; b=0 .

The divergence of AaA_{a} is arbitrary and we may choose Aa;a=0A_{a} ; a=0. With this choice show that in a general spacetime

Aa;b;bRacAc=0.A_{a ; b}{ }^{; b}-R_{a}{ }^{c} A_{c}=0 .

Hence show that in the Schwarzschild spacetime a tensor field whose only non-trivial components are Ftr=Frt=Q/r2F_{t r}=-F_{r t}=Q / r^{2}, where QQ is a constant, satisfies the field equations ()(* * * *).

Typos? Please submit corrections to this page on GitHub.