A1.9

Number Theory | Part II, 2004

(i) State the law of quadratic reciprocity. For p5p \neq 5 an odd prime, evaluate the Legendre symbol

(5p)\left(\frac{5}{p}\right)

(ii) (a) Let p1,,pmp_{1}, \ldots, p_{m} and q1,,qnq_{1}, \ldots, q_{n} be distinct odd primes. Show that there exists an integer xx that is a quadratic residue modulo each of p1,,pmp_{1}, \ldots, p_{m} and a quadratic non-residue modulo each of q1,,qnq_{1}, \ldots, q_{n}.

(b) Let pp be an odd prime. Show that

a=1p1(ap)=0\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=0

(c) Let pp be an odd prime. Using (b) or otherwise, evaluate

a=1p2(ap)(a+1p)\sum_{a=1}^{p-2}\left(\frac{a}{p}\right)\left(\frac{a+1}{p}\right)

[\left[\right. Hint for (c)(c) : Use the equality (x2yp)=(yp)\left(\frac{x^{2} y}{p}\right)=\left(\frac{y}{p}\right), valid when pp does not divide x.]\left.x .\right]

Typos? Please submit corrections to this page on GitHub.