B4.24

Applications of Quantum Mechanics | Part II, 2004

Describe briefly the variational approach to determining approximate energy eigenvalues for a Hamiltonian HH.

Consider a Hamiltonian HH and two states ψ1,ψ2\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle such that

ψ1Hψ1=ψ2Hψ2=E,ψ2Hψ1=ψ1Hψ2=εψ1ψ1=ψ2ψ2=1,ψ2ψ1=ψ1ψ2=s\begin{array}{cl} \left\langle\psi_{1}|H| \psi_{1}\right\rangle=\left\langle\psi_{2}|H| \psi_{2}\right\rangle=\mathcal{E}, & \left\langle\psi_{2}|H| \psi_{1}\right\rangle=\left\langle\psi_{1}|H| \psi_{2}\right\rangle=\varepsilon \\ \left\langle\psi_{1} \mid \psi_{1}\right\rangle=\left\langle\psi_{2} \mid \psi_{2}\right\rangle=1, & \left\langle\psi_{2} \mid \psi_{1}\right\rangle=\left\langle\psi_{1} \mid \psi_{2}\right\rangle=s \end{array}

Show that, by considering a linear combination αψ1+βψ2\alpha\left|\psi_{1}\right\rangle+\beta\left|\psi_{2}\right\rangle, the variational method gives

Eε1s,E+ε1+s\frac{\mathcal{E}-\varepsilon}{1-s}, \quad \frac{\mathcal{E}+\varepsilon}{1+s}

as approximate energy eigenvalues.

Consider the Hamiltonian for an electron in the presence of two protons at 0\mathbf{0} and R\mathbf{R},

H=p22m+e24πϵ0(1R1r1rR),R=RH=\frac{\mathbf{p}^{2}}{2 m}+\frac{e^{2}}{4 \pi \epsilon_{0}}\left(\frac{1}{R}-\frac{1}{|\mathbf{r}|}-\frac{1}{|\mathbf{r}-\mathbf{R}|}\right), \quad R=|\mathbf{R}|

Let ψ0(r)=er/a/(πa3)12\psi_{0}(\mathbf{r})=e^{-r / a} /\left(\pi a^{3}\right)^{\frac{1}{2}} be the ground state hydrogen atom wave function which satisfies

(p22me24πϵ0r)ψ0(r)=E0ψ0(r).\left(\frac{\mathbf{p}^{2}}{2 m}-\frac{e^{2}}{4 \pi \epsilon_{0}|\mathbf{r}|}\right) \psi_{0}(\mathbf{r})=E_{0} \psi_{0}(\mathbf{r}) .

It is given that

S=d3rψ0(r)ψ0(rR)=(1+Ra+R23a2)eR/aU=d3r1rψ0(r)ψ0(rR)=1a(1+Ra)eR/a\begin{aligned} &S=\int \mathrm{d}^{3} r \psi_{0}(\mathbf{r}) \psi_{0}(\mathbf{r}-\mathbf{R})=\left(1+\frac{R}{a}+\frac{R^{2}}{3 a^{2}}\right) e^{-R / a} \\ &U=\int \mathrm{d}^{3} r \frac{1}{|\mathbf{r}|} \psi_{0}(\mathbf{r}) \psi_{0}(\mathbf{r}-\mathbf{R})=\frac{1}{a}\left(1+\frac{R}{a}\right) e^{-R / a} \end{aligned}

and, for large RR, that

d3r1rRψ0(r)21R=O(e2R/a)\int \mathrm{d}^{3} r \frac{1}{|\mathbf{r}-\mathbf{R}|} \psi_{0}(\mathbf{r})^{2}-\frac{1}{R}=\mathrm{O}\left(e^{-2 R / a}\right)

Consider the trial wave function αψ0(r)+βψ0(rR)\alpha \psi_{0}(\mathbf{r})+\beta \psi_{0}(\mathbf{r}-\mathbf{R}). Show that the variational estimate for the ground state energy for large RR is

E(R)=E0+e24πϵ0R(SRU)+O(e2R/a).E(R)=E_{0}+\frac{e^{2}}{4 \pi \epsilon_{0} R}(S-R U)+\mathrm{O}\left(e^{-2 R / a}\right) .

Explain why there is an attractive force between the two protons for large RR.

Typos? Please submit corrections to this page on GitHub.