B1.23

Applications of Quantum Mechanics | Part II, 2004

The operator corresponding to a rotation through an angle θ\theta about an axis n\mathbf{n}, where n\mathbf{n} is a unit vector, is

U(n,θ)=eiθnJ/U(\mathbf{n}, \theta)=e^{i \theta \mathbf{n} \cdot \mathbf{J} / \hbar}

If UU is unitary show that J\mathbf{J} must be hermitian. Let V=(V1,V2,V3)\mathbf{V}=\left(V_{1}, V_{2}, V_{3}\right) be a vector operator such that

U(n,δθ)VU(n,δθ)1=V+δθn×V.U(\mathbf{n}, \delta \theta) \mathbf{V} U(\mathbf{n}, \delta \theta)^{-1}=\mathbf{V}+\delta \theta \mathbf{n} \times \mathbf{V} .

Work out the commutators [Ji,Vj]\left[J_{i}, V_{j}\right]. Calculate

U(z^,θ)VU(z^,θ)1U(\hat{\mathbf{z}}, \theta) \mathbf{V U}(\hat{\mathbf{z}}, \theta)^{-1}

for each component of V\mathbf{V}.

If jm|j m\rangle are standard angular momentum states determine jmU(z^,θ)jm\left\langle j m^{\prime}|U(\hat{\mathbf{z}}, \theta)| j m\right\rangle for any j,m,mj, m, m^{\prime} and also determine 12mU(y^,θ)12m\left\langle\frac{1}{2} m^{\prime}|U(\hat{\mathbf{y}}, \theta)| \frac{1}{2} m\right\rangle.

[\left[\right. Hint :J3jm=mjm,J+1212=1212,J1212=1212]\left.: J_{3}|j m\rangle=m \hbar|j m\rangle, J_{+}\left|\frac{1}{2}-\frac{1}{2}\right\rangle=\hbar\left|\frac{1}{2} \frac{1}{2}\right\rangle, J_{-}\left|\frac{1}{2} \frac{1}{2}\right\rangle=\hbar\left|\frac{1}{2}-\frac{1}{2}\right\rangle \cdot\right]

Typos? Please submit corrections to this page on GitHub.