B3.18

Partial Differential Equations | Part II, 2004

(i) Find w:[0,)×RRw:[0, \infty) \times \mathbb{R} \longrightarrow \mathbb{R} such that w(t,)w(t, \cdot) is a Schwartz function of ξ\xi for each tt and solves

wt(t,ξ)+(1+ξ2)w(t,ξ)=g(ξ),w(0,ξ)=w0(ξ),\begin{gathered} w_{t}(t, \xi)+\left(1+\xi^{2}\right) w(t, \xi)=g(\xi), \\ w(0, \xi)=w_{0}(\xi), \end{gathered}

where gg and w0w_{0} are given Schwartz functions and wtw_{t} denotes tw\partial_{t} w. If F\mathcal{F} represents the Fourier transform operator in the ξ\xi variables only and F1\mathcal{F}^{-1} represents its inverse, show that the solution ww satisfies

t(F1)w(t,x)=F1(tw)(t,x)\partial_{t}\left(\mathcal{F}^{-1}\right) w(t, x)=\mathcal{F}^{-1}\left(\partial_{t} w\right)(t, x)

and calculate limtw(t,)\lim _{t \rightarrow \infty} w(t, \cdot) in Schwartz space.

(ii) Using the results of Part (i), or otherwise, show that there exists a solution of the initial value problem

ut(t,x)uxx(t,x)+u(t,x)=f(x)u(0,x)=u0\begin{gathered} u_{t}(t, x)-u_{x x}(t, x)+u(t, x)=f(x) \\ u(0, x)=u_{0} \end{gathered}

with ff and u0u_{0} given Schwartz functions, such that

u(t,)ϕL(R)0\|u(t, \cdot)-\phi\|_{L^{\infty}(\mathbb{R})} \longrightarrow 0

as tt \rightarrow \infty in Schwartz space, where ϕ\phi is the solution of

ϕ+ϕ=f.-\phi^{\prime \prime}+\phi=f .

Typos? Please submit corrections to this page on GitHub.