B1.7
What does it mean to say that a field is algebraically closed? Show that a field is algebraically closed if and only if, for any finite extension and every homomorphism , there exists a homomorphism whose restriction to is .
Let be a field of characteristic zero, and an algebraic extension such that every nonconstant polynomial over has at least one root in . Prove that is algebraically closed.
Typos? Please submit corrections to this page on GitHub.