A3.19 B3.20

Numerical Analysis | Part II, 2003

(i) The diffusion equation

ut=x(a(x)ux),0x1,t0\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(a(x) \frac{\partial u}{\partial x}\right), \quad 0 \leqslant x \leqslant 1, \quad t \geqslant 0

with the initial condition u(x,0)=ϕ(x),0x1u(x, 0)=\phi(x), 0 \leqslant x \leqslant 1 and zero boundary conditions at x=0x=0 and x=1x=1, is solved by the finite-difference method

umn+1=umn+μ[am12um1n(am12+am+12)umn+am+12um+1n]m=1,2,,N\begin{gathered} u_{m}^{n+1}=u_{m}^{n}+\mu\left[a_{m-\frac{1}{2}} u_{m-1}^{n}-\left(a_{m-\frac{1}{2}}+a_{m+\frac{1}{2}}\right) u_{m}^{n}+a_{m+\frac{1}{2}} u_{m+1}^{n}\right] \\ m=1,2, \ldots, N \end{gathered}

where μ=Δt/(Δx)2,Δx=1N+1\mu=\Delta t /(\Delta x)^{2}, \quad \Delta x=\frac{1}{N+1} and umnu(mΔx,nΔt),aα=a(αΔx)u_{m}^{n} \approx u(m \Delta x, n \Delta t), a_{\alpha}=a(\alpha \Delta x).

Assuming sufficient smoothness of the function aa, and that μ\mu remains constant as Δx>0\Delta x>0 and Δt>0\Delta t>0 become small, prove that the exact solution satisfies the numerical scheme with error O((Δx)3)O\left((\Delta x)^{3}\right).

(ii) For the problem defined in Part (i), assume that there exist 0<a<a+<0<a_{-}<a_{+}<\infty such that aa(x)a+,0x1a_{-} \leqslant a(x) \leqslant a_{+}, \quad 0 \leqslant x \leqslant 1. Prove that the method is stable for 0<μ1/(2a+)0<\mu \leqslant 1 /\left(2 a_{+}\right).

[Hint: You may use without proof the Gerschgorin theorem: All the eigenvalues of the matrix A=(ak,l)k,l=1,,MA=\left(a_{k, l}\right)_{k, l=1, \ldots, M} are contained in k=1mSk\bigcup_{k=1}^{m} \mathbb{S}_{k}, where

Sk={zC:zak,kl=1lkmak,l},k=1,2,,m.]\left.\mathbb{S}_{k}=\left\{z \in \mathbb{C}:\left|z-a_{k, k}\right| \leqslant \sum_{\substack{l=1 \\ l \neq k}}^{m}\left|a_{k, l}\right|\right\}, \quad k=1,2, \ldots, m . \quad\right]

Typos? Please submit corrections to this page on GitHub.