A2.2 B2.1

Principles of Dynamics | Part II, 2003

(i) The trajectory x(t)\mathbf{x}(t) of a non-relativistic particle of mass mm and charge qq moving in an electromagnetic field obeys the Lorentz equation

mx¨=q(E+x˙cB).m \ddot{\mathbf{x}}=q\left(\mathbf{E}+\frac{\dot{\mathbf{x}}}{c} \wedge \mathbf{B}\right) .

Show that this equation follows from the Lagrangian

L=12mx˙2q(ϕx˙Ac)L=\frac{1}{2} m \dot{\mathbf{x}}^{2}-q\left(\phi-\frac{\dot{\mathbf{x}} \cdot \mathbf{A}}{c}\right)

where ϕ(x,t)\phi(\mathbf{x}, t) is the electromagnetic scalar potential and A(x,t)\mathbf{A}(\mathbf{x}, t) the vector potential, so that

E=1cA˙ϕ and B=A\mathbf{E}=-\frac{1}{c} \dot{\mathbf{A}}-\nabla \phi \text { and } \mathbf{B}=\nabla \wedge \mathbf{A}

(ii) Let E=0\mathbf{E}=0. Consider a particle moving in a constant magnetic field which points in the zz direction. Show that the particle moves in a helix about an axis pointing in the zz direction. Evaluate the radius of the helix.

Typos? Please submit corrections to this page on GitHub.