B1.19

Methods of Mathematical Physics | Part II, 2003

By considering the integral

C(t1t)idt\int_{C}\left(\frac{t}{1-t}\right)^{i} d t

where CC is a large circle centred on the origin, show that

B(1+i,1i)=πcosechπB(1+i, 1-i)=\pi \operatorname{cosech} \pi

where

B(p,q)=01tp1(1t)q1dt,Re(p)>0,Re(q)>0B(p, q)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t, \operatorname{Re}(p)>0, \operatorname{Re}(q)>0

By using B(p,q)=Γ(p)Γ(q)Γ(p+q)B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}, deduce that Γ(i)Γ(i)=πcosechπ\Gamma(i) \Gamma(-i)=\pi \operatorname{cosech} \pi.

Typos? Please submit corrections to this page on GitHub.