B4.14

Optimization and Control | Part II, 2003

The scalars xt,yt,utx_{t}, y_{t}, u_{t}, are related by the equations

xt=xt1+ut1,yt=xt1+ηt1,t=1,,T,x_{t}=x_{t-1}+u_{t-1}, \quad y_{t}=x_{t-1}+\eta_{t-1}, \quad t=1, \ldots, T,

where {ηt}\left\{\eta_{t}\right\} is a sequence of uncorrelated random variables with means of 0 and variances of 1. Given that x^0\hat{x}_{0} is an unbiased estimate of x0x_{0} of variance 1 , the control variable utu_{t} is to be chosen at time tt on the basis of the information WtW_{t}, where W0=(x^0)W_{0}=\left(\hat{x}_{0}\right) and Wt=(x^0,u0,,ut1,y1,,yt),t=1,2,,T1W_{t}=\left(\hat{x}_{0}, u_{0}, \ldots, u_{t-1}, y_{1}, \ldots, y_{t}\right), t=1,2, \ldots, T-1. Let x^1,,x^T\hat{x}_{1}, \ldots, \hat{x}_{T} be the Kalman filter estimates of x1,,xTx_{1}, \ldots, x_{T} computed from

x^t=x^t1+ut1+ht(ytx^t1)\hat{x}_{t}=\hat{x}_{t-1}+u_{t-1}+h_{t}\left(y_{t}-\hat{x}_{t-1}\right)

by appropriate choices of h1,,hTh_{1}, \ldots, h_{T}. Show that the variance of x^t\hat{x}_{t} is Vt=1/(1+t)V_{t}=1 /(1+t).

Define F(WT)=E[xT2WT]F\left(W_{T}\right)=E\left[x_{T}^{2} \mid W_{T}\right] and

F(Wt)=infut,,uT1E[τ=tT1uτ2+xT2Wt],t=0,,T1F\left(W_{t}\right)=\inf _{u_{t}, \ldots, u_{T-1}} E\left[\sum_{\tau=t}^{T-1} u_{\tau}^{2}+x_{T}^{2} \mid W_{t}\right], \quad t=0, \ldots, T-1

Show that F(Wt)=x^t2Pt+dtF\left(W_{t}\right)=\hat{x}_{t}^{2} P_{t}+d_{t}, where Pt=1/(Tt+1),dT=1/(1+T)P_{t}=1 /(T-t+1), d_{T}=1 /(1+T) and dt1=Vt1VtPt+dt.d_{t-1}=V_{t-1} V_{t} P_{t}+d_{t} .

How would the expression for F(W0)F\left(W_{0}\right) differ if x^0\hat{x}_{0} had a variance different from 1?1 ?

Typos? Please submit corrections to this page on GitHub.