A3.10

Algorithms and Networks | Part II, 2003

(i) Consider the problem

minimizef(x) subject to h(x)=b,xX,\begin{aligned} \operatorname{minimize} & f(x) \\ \text { subject to } & h(x)=b, \quad x \in X, \end{aligned}

where f:RnR,h:RnRm,XRnf: \mathbb{R}^{n} \rightarrow \mathbb{R}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, X \subseteq \mathbb{R}^{n} and bRmb \in \mathbb{R}^{m}. State and prove the Lagrangian sufficiency theorem.

In each of the following cases, where n=2,m=1n=2, m=1 and X={(x,y):x,y0}X=\{(x, y): x, y \geqslant 0\}, determine whether the Lagrangian sufficiency theorem can be applied to solve the problem:

(ii) Consider the problem in Rn\mathbb{R}^{n}

minimize12xTQx+cTx subject to Ax=b\begin{aligned} \operatorname{minimize} & \frac{1}{2} x^{T} Q x+c^{T} x \\ \text { subject to } & A x=b \end{aligned}

where QQ is a positive-definite symmetric n×nn \times n matrix, AA is an m×nm \times n matrix, cRnc \in \mathbb{R}^{n} and bRmb \in \mathbb{R}^{m}. Explain how to reduce this problem to the solution of simultaneous linear equations.

Consider now the problem

minimize12xTQx+cTx subject to Axb\begin{aligned} \operatorname{minimize} & \frac{1}{2} x^{T} Q x+c^{T} x \\ \text { subject to } & A x \geqslant b \end{aligned}

Describe the active set method for its solution.

Consider the problem

minimize(xa)2+(yb)2+xy subject to 0x1 and 0y1\begin{aligned} \operatorname{minimize} &(x-a)^{2}+(y-b)^{2}+x y \\ \text { subject to } & 0 \leqslant x \leqslant 1 \text { and } 0 \leqslant y \leqslant 1 \end{aligned}

where a,bRa, b \in \mathbb{R}. Draw a diagram partitioning the (a,b)(a, b)-plane into regions according to which constraints are active at the minimum.

 (a) f(x,y)=x,h(x,y)=x2+y2,b=1 (b) f(x,y)=exy,h(x)=x,b=0\begin{aligned} & \text { (a) } \quad f(x, y)=-x, \quad h(x, y)=x^{2}+y^{2}, \quad b=1 \text {; } \\ & \text { (b) } \quad f(x, y)=e^{-x y}, \quad h(x)=x, \quad b=0 \text {. } \end{aligned}

Typos? Please submit corrections to this page on GitHub.