A2.13 B2.21

Foundations of Quantum Mechanics | Part II, 2002

(i) A Hamiltonian H0H_{0} has energy eigenvalues ErE_{r} and corresponding non-degenerate eigenstates r|r\rangle. Show that under a small change in the Hamiltonian δH\delta H,

δr=srsδHrErEss,\delta|r\rangle=\sum_{s \neq r} \frac{\langle s|\delta H| r\rangle}{E_{r}-E_{s}}|s\rangle,

and derive the related formula for the change in the energy eigenvalue ErE_{r} to first and second order in δH\delta H.

(ii) The Hamiltonian for a particle moving in one dimension is H=H0+λHH=H_{0}+\lambda H^{\prime}, where H0=p2/2m+V(x),H=p/mH_{0}=p^{2} / 2 m+V(x), H^{\prime}=p / m and λ\lambda is small. Show that

i[H0,x]=H\frac{i}{\hbar}\left[H_{0}, x\right]=H^{\prime}

and hence that

δEr=λ2irHxr=λ2irxHr\delta E_{r}=-\lambda^{2} \frac{i}{\hbar}\left\langle r\left|H^{\prime} x\right| r\right\rangle=\lambda^{2} \frac{i}{\hbar}\left\langle r\left|x H^{\prime}\right| r\right\rangle

to second order in λ\lambda.

Deduce that δEr\delta E_{r} is independent of the particular state r|r\rangle and explain why this change in energy is exact to all orders in λ\lambda.

Typos? Please submit corrections to this page on GitHub.