A1.2 B1.2

Principles of Dynamics | Part II, 2002

(i) Derive Hamilton's equations from Lagrange's equations. Show that the Hamiltonian HH is constant if the Lagrangian LL does not depend explicitly on time.

(ii) A particle of mass mm is constrained to move under gravity, which acts in the negative zz-direction, on the spheroidal surface ϵ2(x2+y2)+z2=l2\epsilon^{-2}\left(x^{2}+y^{2}\right)+z^{2}=l^{2}, with 0<ϵ10<\epsilon \leqslant 1. If θ,ϕ\theta, \phi parametrize the surface so that

x=ϵlsinθcosϕ,y=ϵlsinθsinϕ,z=lcosθ,x=\epsilon l \sin \theta \cos \phi, y=\epsilon l \sin \theta \sin \phi, z=l \cos \theta,

find the Hamiltonian H(θ,ϕ,pθ,pϕ)H\left(\theta, \phi, p_{\theta}, p_{\phi}\right).

Show that the energy

E=pθ22ml2(ϵ2cos2θ+sin2θ)+αsin2θ+mglcosθE=\frac{p_{\theta}^{2}}{2 m l^{2}\left(\epsilon^{2} \cos ^{2} \theta+\sin ^{2} \theta\right)}+\frac{\alpha}{\sin ^{2} \theta}+m g l \cos \theta

is a constant of the motion, where α\alpha is a non-negative constant.

Rewrite this equation as

12θ˙2+Veff(θ)=0\frac{1}{2} \dot{\theta}^{2}+V_{\mathrm{eff}}(\theta)=0

and sketch Veff(θ)V_{\mathrm{eff}}(\theta) for ϵ=1\epsilon=1 and α>0\alpha>0, identifying the maximal and minimal values of θ(t)\theta(t) for fixed α\alpha and EE. If ϵ\epsilon is now taken not to be unity, how do these values depend on ϵ\epsilon ?

Typos? Please submit corrections to this page on GitHub.