A1.17

Symmetries and Groups in Physics | Part II, 2002

(i) Let HH be a normal subgroup of the group GG. Let G/HG / H denote the group of cosets g~=gH\tilde{g}=g H for gGg \in G. If D:GGL(Cn)D: G \rightarrow G L\left(\mathbb{C}^{n}\right) is a representation of GG with D(h1)=D(h2)D\left(h_{1}\right)=D\left(h_{2}\right) for all h1,h2Hh_{1}, h_{2} \in H show that D~(g~)=D(g)\tilde{D}(\tilde{g})=D(g) is well-defined and that it is a representation of G/HG / H. Show further that D~(g~)\tilde{D}(\tilde{g}) is irreducible if and only if D(g)D(g) is irreducible.

(ii) For a matrix USU(2)U \in S U(2) define the linear map ΦU:R3R3\Phi_{U}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} by ΦU(x)σ=\Phi_{U}(\mathbf{x}) \cdot \boldsymbol{\sigma}= Ux.σUU \mathbf{x} . \boldsymbol{\sigma} U^{\dagger} with σ=(σ1,σ2,σ3)T\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)^{T} as the vector of the Pauli spin matrices

σ1=(0110),σ2=(0ii0),σ3=(1001)\sigma_{1}=\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)

Show that ΦU(x)=x\left\|\Phi_{U}(\mathbf{x})\right\|=\|\mathbf{x}\|. Because of the linearity of ΦU\Phi_{U} there exists a matrix R(U)R(U) such that ΦU(x)=R(U)x\Phi_{U}(\mathbf{x})=R(U) \mathbf{x}. Given that any SU(2)S U(2) matrix can be written as

U=cosαIisinαnσU=\cos \alpha I-i \sin \alpha \mathbf{n} \cdot \boldsymbol{\sigma}

where α[0,π]\alpha \in[0, \pi] and n\mathbf{n} is a unit vector, deduce that R(U)SO(3)R(U) \in S O(3) for all USU(2)U \in S U(2). Compute R(U)nR(U) \mathbf{n} and R(U)xR(U) \mathbf{x} in the case that xn=0\mathbf{x} \cdot \mathbf{n}=0 and deduce that R(U)R(U) is the matrix of a rotation about n\mathbf{n} with angle 2α2 \alpha.

[Hint: m.σn.σ=m.nI+i(m×n).σ.]\mathbf{m} . \boldsymbol{\sigma} \mathbf{n} . \boldsymbol{\sigma}=\mathbf{m} . \mathbf{n} I+i(\mathbf{m} \times \mathbf{n}) . \boldsymbol{\sigma} .]

Show that R(U)R(U) defines a surjective homomorphism Θ:SU(2)SO(3)\Theta: S U(2) \rightarrow S O(3) and find the kernel of Θ\Theta.

Typos? Please submit corrections to this page on GitHub.