B3.24

Fluid Dynamics II | Part II, 2002

(i) Suppose that, with spherical polar coordinates, the Stokes streamfunction

Ψλ(r,θ)=rλsin2θcosθ\Psi_{\lambda}(r, \theta)=r^{\lambda} \sin ^{2} \theta \cos \theta

represents a Stokes flow and thus satisfies the equation D2(D2Ψλ)=0D^{2}\left(D^{2} \Psi_{\lambda}\right)=0, where

D2=2r2+sinθr2θ1sinθθ.D^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{\sin \theta}{r^{2}} \frac{\partial}{\partial \theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} .

Show that the possible values of λ\lambda are 5,3,05,3,0 and 2-2. For which of these values is the corresponding flow irrotational? Sketch the streamlines of the flow for the case λ=3\lambda=3.

(ii) A spherical drop of liquid of viscosity μ1\mu_{1}, radius aa and centre at r=0r=0, is suspended in another liquid of viscosity μ2\mu_{2} which flows with streamfunction

ΨΨ(r,θ)=αr3sin2θcosθ\Psi \sim \Psi_{\infty}(r, \theta)=\alpha r^{3} \sin ^{2} \theta \cos \theta

far from the drop. The two liquids are of equal densities, surface tension is sufficiently strong to keep the drop spherical, and inertia is negligible. Show that

Ψ={(Ar5+Br3)sin2θcosθ(r<a),(αr3+C+D/r2)sin2θcosθ(r>a)\Psi= \begin{cases}\left(A r^{5}+B r^{3}\right) \sin ^{2} \theta \cos \theta & (r<a), \\ \left(\alpha r^{3}+C+D / r^{2}\right) \sin ^{2} \theta \cos \theta & (r>a)\end{cases}

and obtain four equations determining the constants A,B,CA, B, C and DD. (You need not solve these equations.)

[You may assume, with standard notation, that

ur=1r2sinθΨθ,uθ=1rsinθΨr,erθ=12{rr(uθr)+1rurθ}.]\left.u_{r}=\frac{1}{r^{2} \sin \theta} \frac{\partial \Psi}{\partial \theta} \quad, \quad u_{\theta}=-\frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial r} \quad, \quad e_{r \theta}=\frac{1}{2}\left\{r \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}\right\} .\right]

Typos? Please submit corrections to this page on GitHub.