B3.23

Applications of Quantum Mechanics | Part II, 2002

A periodic potential is expressed as V(x)=gageigxV(\mathbf{x})=\sum_{\mathbf{g}} a_{\mathbf{g}} e^{i \mathbf{g} \cdot \mathbf{x}}, where {g}\{\mathbf{g}\} are reciprocal lattice vectors and ag=ag,a0=0a_{\mathbf{g}}{ }^{*}=a_{-\mathbf{g}}, a_{\mathbf{0}}=0. In the nearly free electron model explain why it is appropriate, near the boundaries of energy bands, to consider a Bloch wave state

ψk=rαrkr,kr=k+gr,\left|\psi_{\mathbf{k}}\right\rangle=\sum_{r} \alpha_{r}\left|\mathbf{k}_{r}\right\rangle, \quad \mathbf{k}_{r}=\mathbf{k}+\mathbf{g}_{r},

where k|\mathbf{k}\rangle is a free electron state for wave vector k,kk=δkk\mathbf{k},\left\langle\mathbf{k}^{\prime} \mid \mathbf{k}\right\rangle=\delta_{\mathbf{k}^{\prime} \mathbf{k}}, and the sum is restricted to reciprocal lattice vectors gr\mathbf{g}_{r} such that krk\left|\mathbf{k}_{r}\right| \approx|\mathbf{k}|. Obtain a determinantal formula for the possible energies E(k)E(\mathbf{k}) corresponding to Bloch wave states of this form.

[You may take g1=0\mathbf{g}_{1}=\mathbf{0} and assume eibxk=k+be^{i \mathbf{b} \cdot \mathbf{x}}|\mathbf{k}\rangle=|\mathbf{k}+\mathbf{b}\rangle for any b\mathbf{b}.]

Suppose the sum is restricted to just k\mathbf{k} and k+g\mathbf{k}+\mathbf{g}. Show that there is a gap 2ag2\left|a_{\mathbf{g}}\right| between energy bands. Setting k=12g+q\mathbf{k}=-\frac{1}{2} \mathbf{g}+\mathbf{q}, show that there are two Bloch wave states with energies near the boundaries of the energy bands

E±(k)2g28m±ag+2q22m±48m2ag(qg)2E_{\pm}(\mathbf{k}) \approx \frac{\hbar^{2}|\mathbf{g}|^{2}}{8 m} \pm\left|a_{\mathbf{g}}\right|+\frac{\hbar^{2}|\mathbf{q}|^{2}}{2 m} \pm \frac{\hbar^{4}}{8 m^{2}\left|a_{\mathbf{g}}\right|}(\mathbf{q} \cdot \mathbf{g})^{2}

What is meant by effective mass? Determine the value of the effective mass at the top and the bottom of the adjacent energy bands if q\mathbf{q} is parallel to g\mathrm{g}.

Typos? Please submit corrections to this page on GitHub.