B1.23

Applications of Quantum Mechanics | Part II, 2002

A quantum system, with Hamiltonian H0H_{0}, has continuous energy eigenstates E|E\rangle for all E0E \geq 0, and also a discrete eigenstate 0|0\rangle, with H00=E00,00=1,E0>0H_{0}|0\rangle=E_{0}|0\rangle,\langle 0 \mid 0\rangle=1, E_{0}>0. A time-independent perturbation H1H_{1}, such that EH100\left\langle E\left|H_{1}\right| 0\right\rangle \neq 0, is added to H0H_{0}. If the system is initially in the state 0|0\rangle obtain the formula for the decay rate

w=2πρ(E0)E0H102,w=\frac{2 \pi}{\hbar} \rho\left(E_{0}\right)\left|\left\langle E_{0}\left|H_{1}\right| 0\right\rangle\right|^{2},

where ρ\rho is the density of states.

[You may assume that 1t(sin12ωt12ω)2\frac{1}{t}\left(\frac{\sin \frac{1}{2} \omega t}{\frac{1}{2} \omega}\right)^{2} behaves like 2πδ(ω)2 \pi \delta(\omega) for large tt.]

Assume that, for a particle moving in one dimension,

H0=E000+p2ppdp,H1=f(p0+0p)dpH_{0}=E_{0}|0\rangle\left\langle 0\left|+\int_{-\infty}^{\infty} p^{2}\right| p\right\rangle\langle p| d p, \quad H_{1}=f \int_{-\infty}^{\infty}(|p\rangle\langle 0|+| 0\rangle\langle p|) d p

where pp=δ(pp)\left\langle p^{\prime} \mid p\right\rangle=\delta\left(p^{\prime}-p\right), and ff is constant. Obtain ww in this case.

Typos? Please submit corrections to this page on GitHub.