B4.19

Methods of Mathematical Physics | Part II, 2002

Let

I(λ,a)=iieλ(t33t)t2a2dtI(\lambda, a)=\int_{-i \infty}^{i \infty} \frac{e^{\lambda\left(t^{3}-3 t\right)}}{t^{2}-a^{2}} d t

where λ\lambda is real, aa is real and non-zero, and the path of integration runs up the imaginary axis. Show that, if a2>1a^{2}>1,

I(λ,a)ie2λ1a2π3λI(\lambda, a) \sim \frac{i e^{-2 \lambda}}{1-a^{2}} \sqrt{\frac{\pi}{3 \lambda}}

as λ+\lambda \rightarrow+\infty and sketch the relevant steepest descent path.

What is the corresponding result if a2<1a^{2}<1 ?

Typos? Please submit corrections to this page on GitHub.