B2.18

Methods of Mathematical Physics | Part II, 2002

Show that

Ptz1tadt=πiaz1,\mathcal{P} \int_{-\infty}^{\infty} \frac{t^{z-1}}{t-a} d t=\pi i a^{z-1},

where aa is real and positive, 0<Re(z)<10<\operatorname{Re}(z)<1 and P\mathcal{P} denotes the Cauchy principal value; the principal branches of tzt^{z} etc. are implied. Deduce that

0tz1t+adt=πaz1cosecπz\int_{0}^{\infty} \frac{t^{z-1}}{t+a} d t=\pi a^{z-1} \operatorname{cosec} \pi z

and that

P0tz1tadt=πaz1cotπz\mathcal{P} \int_{0}^{\infty} \frac{t^{z-1}}{t-a} d t=-\pi a^{z-1} \cot \pi z

Use ()(*) to show that, if Im(b)>0\operatorname{Im}(b)>0, then

0tz1tbdt=πbz1(cotπzi)\int_{0}^{\infty} \frac{t^{z-1}}{t-b} d t=-\pi b^{z-1}(\cot \pi z-i)

What is the value of this integral if Im(b)<0\operatorname{Im}(b)<0 ?

Typos? Please submit corrections to this page on GitHub.