B3.18

Partial Differential Equations | Part II, 2002

Define the Schwartz space S(Rn)\mathcal{S}\left(\mathbb{R}^{n}\right) and the space of tempered distributions S(Rn)\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right). State the Fourier inversion theorem for the Fourier transform of a Schwartz function.

Consider the initial value problem:

2ut2Δu+u=0,xRn,0<t<u(0,x)=f(x),ut(0,x)=0\begin{gathered} \frac{\partial^{2} u}{\partial t^{2}}-\Delta u+u=0, x \in \mathbb{R}^{n}, 0<t<\infty \\ u(0, x)=f(x), \quad \frac{\partial u}{\partial t}(0, x)=0 \end{gathered}

for ff in the Schwartz space S(Rn)\mathcal{S}\left(\mathbb{R}^{n}\right).

Show that the solution can be written as

u(t,x)=(2π)n/2Rneixξu^(t,ξ)dξ,u(t, x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} \hat{u}(t, \xi) d \xi,

where

u^(t,ξ)=cos(t1+ξ2)f^(ξ)\hat{u}(t, \xi)=\cos \left(t \sqrt{1+|\xi|^{2}}\right) \hat{f}(\xi)

and

f^(ξ)=(2π)n/2Rneixξf(x)dx.\hat{f}(\xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} f(x) d x .

State the Plancherel-Parseval theorem and hence deduce that

Rnu(t,x)2dxRnf(x)2dx.\int_{\mathbb{R}^{n}}|u(t, x)|^{2} d x \leq \int_{\mathbb{R}^{n}}|f(x)|^{2} d x .

Typos? Please submit corrections to this page on GitHub.