B3.13

Applied Probability | Part II, 2002

(a) Define a renewal process and a discrete renewal process.

(b) State and prove the Discrete Renewal Theorem.

(c) The sequence u={un:n0}\mathbf{u}=\left\{u_{n}: n \geqslant 0\right\} satisfies

u0=1,un=i=1nfiuni, for n1u_{0}=1, \quad u_{n}=\sum_{i=1}^{n} f_{i} u_{n-i}, \quad \text { for } n \geqslant 1

for some collection of non-negative numbers (fi:iN)\left(f_{i}: i \in \mathbb{N}\right) summing to 1 . Let U(s)=U(s)= n=1unsn,F(s)=n=1fnsn\sum_{n=1}^{\infty} u_{n} s^{n}, F(s)=\sum_{n=1}^{\infty} f_{n} s^{n}. Show that

F(s)=U(s)1+U(s).F(s)=\frac{U(s)}{1+U(s)} .

Give a probabilistic interpretation of the numbers un,fnu_{n}, f_{n} and mn=i=1nuim_{n}=\sum_{i=1}^{n} u_{i}.

(d) Let the sequence unu_{n} be given by

u2n=(2nn)(12)2n,u2n+1=0,n1.u_{2 n}=\left(\begin{array}{c} 2 n \\ n \end{array}\right)\left(\frac{1}{2}\right)^{2 n}, \quad u_{2 n+1}=0, \quad n \geqslant 1 .

How is this related to the simple symmetric random walk on the integers Z\mathbb{Z} starting from the origin, and its subsequent returns to the origin? Determine F(s)F(s) in this case, either by calculating U(s)U(s) or by showing that FF satisfies the quadratic equation

F22F+s2=0, for 0s<1.F^{2}-2 F+s^{2}=0, \quad \text { for } \quad 0 \leqslant s<1 .

Typos? Please submit corrections to this page on GitHub.