B4.6

Number Fields | Part II, 2001

For a prime number p>2p>2, set ζ=e2πi/p,K=Q(ζ)\zeta=e^{2 \pi i / p}, K=\mathbf{Q}(\zeta) and K+=Q(ζ+ζ1)K^{+}=\mathbf{Q}\left(\zeta+\zeta^{-1}\right).

(a) Show that the (normalized) minimal polynomial of ζ1\zeta-1 over Q\mathbf{Q} is equal to

f(x)=(x+1)p1x.f(x)=\frac{(x+1)^{p}-1}{x} .

(b) Determine the degrees [K:Q][K: \mathbf{Q}] and [K+:Q]\left[K^{+}: \mathbf{Q}\right].

(c) Show that

j=1p1(1ζj)=p\prod_{j=1}^{p-1}\left(1-\zeta^{j}\right)=p

(d) Show that disc(f)=(1)p12pp2\operatorname{disc}(f)=(-1)^{\frac{p-1}{2}} p^{p-2}.

(e) Show that KK contains Q(p)\mathbf{Q}\left(\sqrt{p^{*}}\right), where p=(1)p12pp^{*}=(-1)^{\frac{p-1}{2}} p.

(f) If j,kZj, k \in \mathbf{Z} are not divisible by pp, show that 1ζj1ζk\frac{1-\zeta^{j}}{1-\zeta^{k}} lies in OK\mathcal{O}_{K}^{*}.

(g) Show that the ideal (p)=pOK(p)=p \mathcal{O}_{K} is equal to (1ζ)p1(1-\zeta)^{p-1}.

Typos? Please submit corrections to this page on GitHub.