B2.9

Number Fields | Part II, 2001

Determine the ideal class group of Q(11)\mathbf{Q}(\sqrt{-11}).

Find all solutions of the diophantine equation

y2+11=x3(x,yZ)y^{2}+11=x^{3} \quad(x, y \in \mathbf{Z})

[Minkowski's bound is n!nn(4/π)r2Dk1/2n ! n^{-n}(4 / \pi)^{r_{2}}\left|D_{k}\right|^{1 / 2}.]

Typos? Please submit corrections to this page on GitHub.