B2.7

Differentiable Manifolds | Part II, 2001

State Stokes' Theorem.

Prove that, if MmM^{m} is a compact connected manifold and Φ:URm\Phi: U \rightarrow \mathbb{R}^{m} is a surjective chart on MM, then for any ωΩm(M)\omega \in \Omega^{m}(M) there is ηΩm1(M)\eta \in \Omega^{m-1}(M) such that supp(ω+dη)Φ1(Bm)\operatorname{supp}(\omega+d \eta) \subseteq \Phi^{-1}\left(\mathbf{B}^{m}\right), where Bm\mathbf{B}^{m} is the unit ball in Rm\mathbb{R}^{m}.

[You may assume that, if ωΩm(Rm)\omega \in \Omega^{m}\left(\mathbb{R}^{m}\right) with supp(ω)Bm\operatorname{supp}(\omega) \subseteq \mathbf{B}^{m} and Rmω=0\int_{\mathbb{R}^{m}} \omega=0, then ηΩm1(Rm)\exists \eta \in \Omega^{m-1}\left(\mathbb{R}^{m}\right) with supp(η)Bm\operatorname{supp}(\eta) \subseteq \mathbf{B}^{m} such that dη=ω.]\left.d \eta=\omega .\right]

By considering the mm-form

ω=x1dx2dxm+1++xm+1dx1dxm\omega=x_{1} d x_{2} \wedge \ldots \wedge d x_{m+1}+\cdots+x_{m+1} d x_{1} \wedge \ldots \wedge d x_{m}

on Rm+1\mathbb{R}^{m+1}, or otherwise, deduce that Hm(Sm)RH^{m}\left(S^{m}\right) \cong \mathbb{R}.

Typos? Please submit corrections to this page on GitHub.