A 1.51 . 5 \quad B 1.41 . 4 \quad

Electromagnetism | Part II, 2001

(i) Write down the two Maxwell equations that govern steady magnetic fields. Show that the boundary conditions satisfied by the magnetic field on either side of a current sheet, J\mathbf{J}, with unit normal to the sheet n\mathbf{n}, are

nB2nB1=μ0J\mathbf{n} \wedge \mathbf{B}_{2}-\mathbf{n} \wedge \mathbf{B}_{1}=\mu_{0} \mathbf{J}

State without proof the force per unit area on J\mathbf{J}.

(ii) Conducting gas occupies the infinite slab 0xa0 \leqslant x \leqslant a. It carries a steady current j=(0,0,j)\mathbf{j}=(0,0, j) and a magnetic field B=(0,B,0)\mathbf{B}=(0, B, 0) where j\mathbf{j}, B\mathbf{B} depend only on xx. The pressure is p(x)p(x). The equation of hydrostatic equilibrium is p=jB\nabla p=\mathbf{j} \wedge \mathbf{B}. Write down the equations to be solved in this case. Show that p+(1/2μ0)B2p+\left(1 / 2 \mu_{0}\right) B^{2} is independent of xx. Using the suffixes 1,2 to denote values at x=0,ax=0, a, respectively, verify that your results are in agreement with those of Part (i) in the case of a0a \rightarrow 0.

Suppose that

j(x)=πj02asin(πxa),B1=0,p2=0j(x)=\frac{\pi j_{0}}{2 a} \sin \left(\frac{\pi x}{a}\right), \quad B_{1}=0, \quad p_{2}=0

Find B(x)B(x) everywhere in the slab.

Typos? Please submit corrections to this page on GitHub.