A3.15

Symmetries and Groups in Physics | Part II, 2001

(i) The pions form an isospin triplet with π+=1,1,π0=1,0\pi^{+}=|1,1\rangle, \pi^{0}=|1,0\rangle and π=1,1\pi^{-}=|1,-1\rangle, whilst the nucleons form an isospin doublet with p=12,12p=\left|\frac{1}{2}, \frac{1}{2}\right\rangle and n=12,12n=\left|\frac{1}{2},-\frac{1}{2}\right\rangle. Consider the isospin representation of two-particle states spanned by the basis

T={π+p,π+n,π0p,π0n,πp,πn}T=\left\{\left|\pi^{+} p\right\rangle,\left|\pi^{+} n\right\rangle,\left|\pi^{0} p\right\rangle,\left|\pi^{0} n\right\rangle,\left|\pi^{-} p\right\rangle,\left|\pi^{-} n\right\rangle\right\}

State which irreducible representations are contained in this representation and explain why π+p\left|\pi^{+} p\right\rangle is an isospin eigenstate.

Using

Ij,m=(jm+1)(j+m)j,m1,I_{-}|j, m\rangle=\sqrt{(j-m+1)(j+m)}|j, m-1\rangle,

where II_{-}is the isospin ladder operator, write the isospin eigenstates in terms of the basis, TT.

(ii) The Lie algebra su(2)s u(2) of generators of SU(2)S U(2) is spanned by the operators {J+,J,J3}\left\{J_{+}, J_{-}, J_{3}\right\} satisfying the commutator algebra [J+,J]=2J3\left[J_{+}, J_{-}\right]=2 J_{3} and [J3,J±]=±J±\left[J_{3}, J_{\pm}\right]=\pm J_{\pm}. Let Ψj\Psi_{j} be an eigenvector of J3:J3(Ψj)=jΨjJ_{3}: J_{3}\left(\Psi_{j}\right)=j \Psi_{j} such that J+Ψj=0J_{+} \Psi_{j}=0. The vector space Vj=span{JnΨj:nN0}V_{j}=\operatorname{span}\left\{J_{-}^{n} \Psi_{j}: n \in \mathbb{N}_{0}\right\} together with the action of an arbitrary su(2) operator AA on VjV_{j} defined by

J(JnΨj)=Jn+1Ψj,A(JnΨj)=[A,J](Jn1Ψj)+J(A(Jn1Ψj))J_{-}\left(J_{-}^{n} \Psi_{j}\right)=J_{-}^{n+1} \Psi_{j}, \quad A\left(J_{-}^{n} \Psi_{j}\right)=\left[A, J_{-}\right]\left(J_{-}^{n-1} \Psi_{j}\right)+J_{-}\left(A\left(J_{-}^{n-1} \Psi_{j}\right)\right)

forms a representation (not necessarily reducible) of su(2)s u(2). Show that if JnΨjJ_{-}^{n} \Psi_{j} is nontrivial then it is an eigenvector of J3J_{3} and find its eigenvalue. Given that [J+,Jn]=\left[J_{+}, J_{-}^{n}\right]= αnJn1J3+βnJn1\alpha_{n} J_{-}^{n-1} J_{3}+\beta_{n} J_{-}^{n-1} show that αn\alpha_{n} and βn\beta_{n} satisfy

αn=αn1+2,βn=βn1αn1\alpha_{n}=\alpha_{n-1}+2, \quad \beta_{n}=\beta_{n-1}-\alpha_{n-1}

By solving these equations evaluate [J+,Jn]\left[J_{+}, J_{-}^{n}\right]. Show that J+J2j+1Ψj=0J_{+} J_{-}^{2 j+1} \Psi_{j}=0. Hence show that J2j+1ΨjJ_{-}^{2 j+1} \Psi_{j} is contained in a proper sub-representation of VjV_{j}.

Typos? Please submit corrections to this page on GitHub.